Trolley Bus System Evaluation Preliminary Findings

Trolley Bus System Evaluation

King County

- 1. Background / Purpose of Evaluation
- 2. Auxiliary Power Unit (APU) Review
- 3. Environmental Analysis Summary
- 4. Life Cycle Cost Analysis Summary
- 5. Preliminary Findings
- 6. Next Steps

Purpose of the Evaluation

- 2009 transit performance audit required evaluation
- Establish budget plan for fleet replacement (2012-2013 biennial budget)

Evaluation Schedule

🛃 King County

METRO

We'll Get You There.

4

Metro's Trolley Bus Network

- 14 routes and 159 trolley buses
- 70 miles of two-way overhead wire
- Carries 20% of Metro's weekday riders
- One of five trolley systems in USA
 - 1. Seattle, WA
 - 2. San Francisco, CA
 - 3. Dayton, OH
 - 4. Philadelphia, PA
 - 5. Boston, MA

King County

5

Status of Metro's Trolley Buses

- Buses need to be replaced
- Outdated electrical systems
- Cracked trolley bus frames
- Obsolete parts

Bus Technologies Eliminated from Further Consideration

Diesel	Less fuel efficient Greater environmental impact than diesel hybrids
Electric Battery	Not commercially available Reduced travel range
Compressed Natural Gas	High costs Greater environmental impacts than diesel hybrids
Hydrogen Fuel Cell	Not commercially available High costs Reduced travel range Reduced reliability

Bus Technologies Included in the Evaluation

Diesel Hybrid Bus

Reworked transmission to travel on steep grades

Electric Trolley Bus

Photo by John Perlic

Added auxiliary power unit (APU) for off-wire travel

Electric Trolley Bus Auxiliary Power Unit (APU) Review

	Battery APU	Diesel APU
APUs in operation -	San Francisco, CA Dayton, OH Boston, MA Vancouver, BC	Philadelphia, PA
Range (Miles)	Up to 2.5	Up to 150
Max speed, Level	40 mph	25 mph
Max grade	As required	6%
Acceleration	Better	Worse
Switch from electric power	Faster	Slower
Fuel required	None	Yes

Environmental Comparative Analysis Summary

	Diesel Hybrid	Electric Trolley Bus with Auxiliary Power Unit	
Traffic	Favors Diesel Hybrid	Favors Electric Trolley Bus	a state
Noise			
Air Quality / Climate Change			
Energy			
Environmental Justice			
Historic Buildings			
Visual Quality			
Neighborhood Character			
	KEY Favors Bus Greatly Fav	Technology ors Bus Technology	
	Similar Ben	efit or Impact for both Bus Technologie	25

Annualized Life-Cycle Cost Summary

F	Diesel Hybrid	Electric Trolley Bus with Auxiliary Power Unit	
	Favors Diesel Hybrid	Favors Electric Trolley Bus	

Electric Trolley Bus technology costs \$3.7 million less than Diesel Hybrid

Trolley Bus System Evaluation

11

Traffic

Diesel Hybrid

Favors Diesel Hybrid

No travel limitations from trolley wire

- May operate at slower speeds on steep grades
 - Low gearing for steep hills limits top speed on level grades

Electric Trolley Bus

with Auxiliary Power Unit

Favors Electric Trolley Bus

- Off-wire travel limited by APU range
- Can operate at faster speeds on steep grades
- No speed limitations on level grades

Noise

METRO

Climate Change

Diesel Hybrid

Favors Diesel Hybrid

Electric Trolley Bus

with Auxiliary Power Unit

Favors Electric Trolley Bus

Annual Fleet-wide CO₂e Emissions

Diesel Hybrid

Favors Diesel Hybrid

Electric Trolley Bus

with Auxiliary Power Unit

Favors Electric Trolley Bus

Annual Fleet-wide Energy Consumption (million BTU)

Environmental Justice: Minority and Low-Income Population Distribution along Electric Trolley Bus Routes

Areas with high concentrations of lowincome population

Areas with high concentrations of minority population

Environmental Justice: Impacts to Low-Income and Minority Populations

Diesel Hybrid

Favors Diesel Hybrid

Electric Trolley Bus

with Auxiliary Power Unit

Favors Electric Trolley Bus

- Higher impacts from noise and air pollution
- Lower visual impacts with wire removal
- Lower impacts from noise and air pollution
- Higher visual impacts from wires and power supply system

Visual Quality

Diesel Hybrid Favors Diesel Hybrid **Electric Trolley Bus**

with Auxiliary Power Unit

Favors Electric Trolley Bus

Improved visual quality with removal of wires

(Varies depending on location)

Impacts from trolley wires

(Highest in view corridors and residential neighborhoods)

18

Visual Simulation: Rainier Valley

Before

Trolley Bus System Evaluation

Visual Simulation: Rainier Valley

After

Trolley Bus System Evaluation

Visual Simulation: Downtown from Beacon Hill

Trolley Bus System Evaluation

METRO We'll C

Visual Simulation: Downtown from Beacon Hill

Trolley Bus System Evaluation

22

Life-Cycle Cost Model Data

- 1. Operating environment
 - Current service
 - i. Miles of trolley overhead wire
 - ii. Actual annual trolley service miles
 - iii. Magnitude and frequency of dieselization
 - b. Projected future service
 - i. Miles of trolley overhead wire
 - ii. Projected annual trolley service miles
 - Magnitude and frequency of dieselization -Effect of APUs if and when implemented
- Vehicle
 - Vehicle types
 - b. Vehicle life span
 - c. Fleet size
 - d. Capital costs
 - i. Historic Base Price -Escalation
 - ii. Current Base Price
 - iii. Cost adjustments
 - sales tax
 - additional equipment
 - special tools
 - diagnostic equipment
 - service preparation
 - training & manuals
 - project management
 - inspection
 - contingency
 - salvage value
 - iv. Total Capital Cost

- Operating costs
 - a. fuel/electricity
 - i. basis for operating cost assumptions
 - ii. caling average fleet operating costs to reflect KC
 - Metro trolley service environment
 - b. staff labor and overhead
- 4. Maintenance costs
 - a. fueling & servicing
 - b. spare parts
 - c. tires
 - d. routine maintenance
 - e. trouble calls
 - f. staff labor and overhead
- 5. Maintenance Facilities
 - a. Fueling facility and infrastructure
 - b. Efficiencies of work flow, scheduling, spares storage
- 6. Trolley Overhead (TOH) Wire
 - a. Annual maintenance and inspection
 - i. Materials and repair
 - ii. Cleaning and landscaping
 - iii. Utilities and Taxes
 - b. Capital Improvements
 - i. System Modifications
 - ii. Future Rectifier Replacements
 - iii. Substation Enclosures
 - iv. Contractor Replacement
 - v. Substation Batteries and Enclosure
 - vi. Substation AC Cubicle
 - vii. TAMP: Trolley Overhead Pole And Switch Maintenance
 - viii. Influence of TOH lifespan on life cycle cost analysis
 - c. Decommissioning

Key Life-Cycle Cost Model Assumptions

- Vehicle useful life (FTA, 2008)
 - Electric Trolley Bus: 15 years
 - Diesel Hybrid: 12 years
- 60 foot vehicle costs
 - Electric Trolley Bus: \$1,285,000
 - Diesel Hybrid: \$785,000
- Real Discount Rate (King County): 7% future value of today's dollars
- Annualized cost is calculated over one life-cycle for each vehicle type.
- Differential in fixed guideway grant amount is assumed in the analysis.
- Decommissioning trolley infrastructure: \$37 million
- Expanding fuel capacity at base for hybrids: \$5 million

Annualized Life-Cycle Cost Summary

Electric Trolley Bus technology costs \$3.7 million less than Diesel Hybrid

25

We'll Get You There.

METRO

Influence of Fixed Guideway Funding on Total Annualized Cost

If FTA fixed guideway funding falls below 31% of current funding, the Diesel Hybrid technology is favored

Sensitivity of Major Cost Variables

Base Case

What would be required to make Diesel Hybrid more cost effective?				
Input	Ability to Switch Results			
Fixed guideway funding	Reduce to 31% of current level			
Gas price	Not possible			
Electricity price	Increase 20% per year			
Diesel Hybrid life span	Increase from 12 to 17 years			
Electric Trolley Bus purchase price	Increase by 34%			
Diesel Hybrid purchase price	Decrease by 48%			

Built environment elements favor Electric Trolley Bus Cost elements favor Electric Trolley Bus

Metro preliminary findings favor Electric Trolley Bus

- April 27: Public meeting
- April and May: Collect public feedback and finalize report
- June: Study findings incorporated into Metro's 2012 – 2013 budget