

Prepared for:

Non-Motorized Connectivity Study

September 2014

TABLE OF CONTENTS

1.	Introduction1
2.	Literature Review Findings – Non-Motorized Access and Transit Ridership
3.	Data Collection11
4.	Data Preparation13
5.	Connectivity Analysis and Tools20
6.	Regression Modeling
7.	Existing Conditions Connectivity Analysis Results42
8.	Future Projects Dataset
9.	Future Projects Connectivity Analysis Results54
10.	Project Prioritization79
11.	Market Analysis91
12.	Case Studies
13.	Model Limitations and Thoughts on Future Improvements147

APPENDICES

Appendix A: Connectivity User Guide Appendix B. Project Type Rankings by Percent Change in Ridership Appendix C: Project Type Rankings by Potential New Riders Appendix D: Demographic and Ranking Tables Appendix E: Project Type Prioritization by Aggregate Method Appendix F: Example Plans for Future Projects

LIST OF TABLES

Table 1: Summary of Influential Access to Transit Factors	4
Table 2: Regression Model Variables	11
Table 3: Bike/Level of Stress Calculation Matrix	18
Table 4: RDI Scoring Categories	22
Table 5: Bike Stress Scoring Categories	24
Table 6: Intersection and Sidewalk/Walkway Density Scoring	26
Table 7: Arterial Signalized Crossing Scoring	28
Table 8. Regression Model Variables	34
Table 9: Base Model Coefficients	36
Table 10: Connectivity Coefficients	38
Table 11: Final Regression Results	40
Table 12: Top 15 and Bottom 15 Station Locations for Composite Connectivity Index Scores	42
Table 13: Stop Locations with the Largest Change in RDI	54
Table 14: Stop Locations with the Largest Change in Signalized Arterial Crossing Index	57
Table 15: Stop Locations with the Largest Change in the Sidewalk Density Score	59
Table 16: Stop Locations with the Largest Change in the Intersection Density Score	61
Table 17: Stop Locations with the Largest Reduction in the Bike Stress Average	63
Table 18: Top 15 locations in Walk Shed and Bike shed Area Increase	65
Table 19: Stations with the Largest Change in the Connectivity Composite Score	68
Table 20: Top 40 Project Types with the Largest Percent Change in Daily Ridership	83
Table 21: Top 30 Project Types with the Largest Change in Net Daily Ridership	85
Table 22: Demographic and Transit Service Scoring Metric	86
Table 23: Aggregate Stop-Area Project Rankings	88

Table 24: Demographic and Transit Service Scoring Metric	
Table 25: Station Areas with High Potential for Marketing Efforts	93
Table 26: Station Areas with High Potential for Infrastructure Investment	95
Table 27: Station Areas with High Potential Return from Zoning Changes	97
Table 28: 2035 Employment and Population in Case Study Locations	127
Table 29: Daily Ridership Estimates	133
Table 30: Daily Ridership Estimates Based on Sound Transit Model Forecasts	134
Table 31: Case Study Project Evaluation	141
Table 32: Case Study Project Evaluation	145

LIST OF FIGURES

Figure 1: Study Area
Figure 2: Issaquah (left) and Burien (right) Sidewalk GIS Files14
Figure 3: Examples of Network Gaps and Discontinuities16
Figure 4: Example Attributes of a Minor Arterial (left) and an Off-street Path (right) from the fina
Figure 5: Example Connectivity Surfaces21
Figure 6: Examples of Route Directness in Northgate Transit Center and Capitol Hill
Figure 7: Example of Bike Stress routing and the Bike Stress Index
Figure 8: Examples of Sidewalk/Walkway Density and Intersection Density
Figure 9: Examples of Signalized Arterial Index29
Figure 10: Examples of 15-Minute Travel Sheds Areas in Seattle and Redmond
Figure 11. Connectivity Modeling Process
Figure 12. Scatter plot of Actual vs. Prediction for Daily Boardings
Figure 13: Composite Connectivity Scores - West Seattle and Downtown Seattle
Figure 14: Composite Connectivity Scores - Othello and Mt. Baker LRT Stations
Figure 15: Composite Connectivity Scores - Northgate Transit Center and Overlake Village46
Figure 16: Composite Connectivity Scores - Edmonds Sounder Station and Tukwila Internationa Boulevard Light Rail Station48
Figure 17: Composite Connectivity Scores - Kent-Des Moines Rd and in Federal Way Transi Center49
Figure 18: Gaps in Seattle Bike Plan and the Existing Street Network (left) and Discrepancies between the Network and the Bellevue Bike Plan GIS Data (right)52
Figure 19: Existing and Future RDI Scores for Overlake Village
Figure 20: Existing and Future Signalized Arterial Crossing Score for North Seattle
Figure 21: Existing and Future Sidewalk Density Scores for Tukwila Urban Center60

Figure 22:	Existing and Future Intersection Density Scores for SeaTac	62
Figure 23:	Existing and Future Bike Stress Scores for Overlake Village	64
Figure 24:	Existing and Future 15-minute Walk Shed for the Northgate Transit Center Area	66
Figure 25:	Existing and Future 15-minute Bike Sheds for the Northgate Transit Center Area	67
Figure 26:	Existing and Future Connectivity in SeaTac	70
Figure 27:	Existing and Future Connectivity in Burien	72
Figure 28:	Existing and Future Connectivity in West Seattle	74
Figure 29:	Existing and Future Connectivity in Lynnwood	76
Figure 30:	Existing and Future Connectivity in in Overlake Village	78
Figure 31:	Station Areas with High Marketing Potential	94
Figure 32:	Station Areas with High Investment Potential	96
Figure 33:	Station Areas with High Zoning Potential	98
Figure 34:	Northgate Transit Center RDI and Signalized Arterial Crossing Index	101
Figure 35:	Northgate Transit Center Bike Stress and Bike Shed	102
Figure 36:	Northgate Transit Center Arterial Sidewalk/Walkway Density and Intersection Demonstry	-
Figure 37:	Northgate Transit Center Composite Connectivity Scores	104
Figure 38:	Pedestrian Underpass of I-5 and Unsignalized Crossing of Roosevelt Ave	105
Figure 39:	Bicyclist along Northgate Way and Urban Form near Transit Center	106
Figure 40:	Overlake Village RDI and Signalized Arterial Crossing Index	107
Figure 41:	Overlake Village Bike Stress and Bike Shed	108
Figure 42:	Overlake Village Arterial Sidewalk/Walkway Density and Intersection Density	109
Figure 43:	Overlake Village Composite Connectivity Scores	110
Figure 44:	Narrow Sidewalk along 148th Ave and Wide Sidewalks with Signalized Crossings a 156th Ave	

Figure 45: Bicyclist along NE 24th St and New Bike Lanes along 152nd Ave	111
Figure 46: Mt. Baker LRT Station RDI and Signalized Arterial Crossing Index	113
Figure 47: Mt. Baker LRT Station Bike Stress and Bike shed	114
Figure 48: Mt. Baker Arterial Sidewalk/Walkway Density and Intersection Density	115
Figure 49: Mt. Baker LRT Station Composite Connectivity Scores	116
Figure 50: Pedestrians along MLK Jr. Way and Poor Sidewalk Quality	117
Figure 51: Bicyclist along Rainier Avenue and Steep Terrain West of the Station	117
Figure 52: Federal Way Transit Center RDI and Signalized Arterial Crossing Index	119
Figure 53: Federal Way Transit Center Bike Stress and Bike shed	120
Figure 54: Federal Way Transit Center Arterial Sidewalk/Walkway Density and Intersection E	•
Figure 55: Federal Way TC Composite Connectivity Score	
Figure 56: Buffered Sidewalks with Strip Commercial and Flashing Pedestrian Crossing	123
Figure 57: Bike Lane on S 316th Street and Bike Parking at the Transit Center	124
Figure 58: Northgate Transit Center New Transportation Projects	128
Figure 59: Overlake Village New Transportation Projects	129
Figure 60: Mt. Baker Transit Center New Transportation Projects	130
Figure 61: Federal Way Transit Center New Transportation Projects	131
Figure 62: Northgate Transit Center Future Connectivity Map and 15-minute Travel Sheds	136
Figure 63: Overlake Village Future Connectivity Map and 15-minute Travel Sheds	137
Figure 64: Mt. Baker LRT Station Future Connectivity Map and 15-minute Travel Sheds	138
Figure 65: Federal Way Transit Center Future Connectivity Map and 15-minute Travel Sheds	139

1. INTRODUCTION

Increasing the availability of transportation options is a primary goal of *Transportation 2040*, the Puget Sound region's long-range transportation blueprint. Transit plays a key role in providing for local and regional mobility, but in many areas, transit access is limited by a lack of non-motorized infrastructure. There has been an increasing amount of research on how non-motorized access can improve walking/biking mode share, but research on non-motorized access to transit is still a relatively new field.

This study works to fill this gap in the research using data and modeling techniques developed specifically for the Puget Sound region. The timing for this work is right, with continued advancement in non-motorized connectivity research, improved non-motorized data from local jurisdictions, and better analysis techniques being incorporated into common GIS software. The intent of this study is to develop a suite of GIS tools to analyze and visualize non-motorized transit access and to develop a model to understand how non-motorized connectivity affects transit ridership. Using these tools, King County Metro (KC) and Sound Transit (ST) can assess non-motorized access projects, prioritize transit service and investments, and partner with local agencies on obtaining grant and other funds to support transit access projects. The tools and research described in this report are part of an ongoing evaluation of non-motorized transit access by both agencies. This report was informed by earlier access studies and may be incorporated into future evaluations.

The non-motorized transit access study involved a major collaboration with local jurisdictions to collect GIS pedestrian, bicycle, and roadway data from more than 20 local jurisdictions. Using this data, the model team developed a set of GIS analysis tools to summarize connectivity data such as route directness, bike stress, intersection/sidewalk density, and arterial crossing density at more than 500 transit stops across a three-county study area. These connectivity variables were then used to develop a model that can measure the potential change in transit ridership when non-motorized connectivity to transit stops improves.

Also included in this report are several examples of potential uses of the connectivity tools and ridership model. The applications described in the report include:

• A framework for transit agencies to prioritize non-motorized projects included in local jurisdiction active transportation plans

- An evaluation of "market areas" where areas with high/low non-motorized connectivity, transit supportive land use densities, and transit supportive demographics are presented
- A set of detailed case study applications where the model was used to evaluate existing and 2035 conditions at four transit stop areas in the region. Through these case studies, the team evaluated specific non-motorized access projects and identified some strategies to enhance the non-motorized evaluation with additional station area planning.

The project study area consists of approximately 400 square miles of KC and ST coverage area, shown in **Figure 1**.

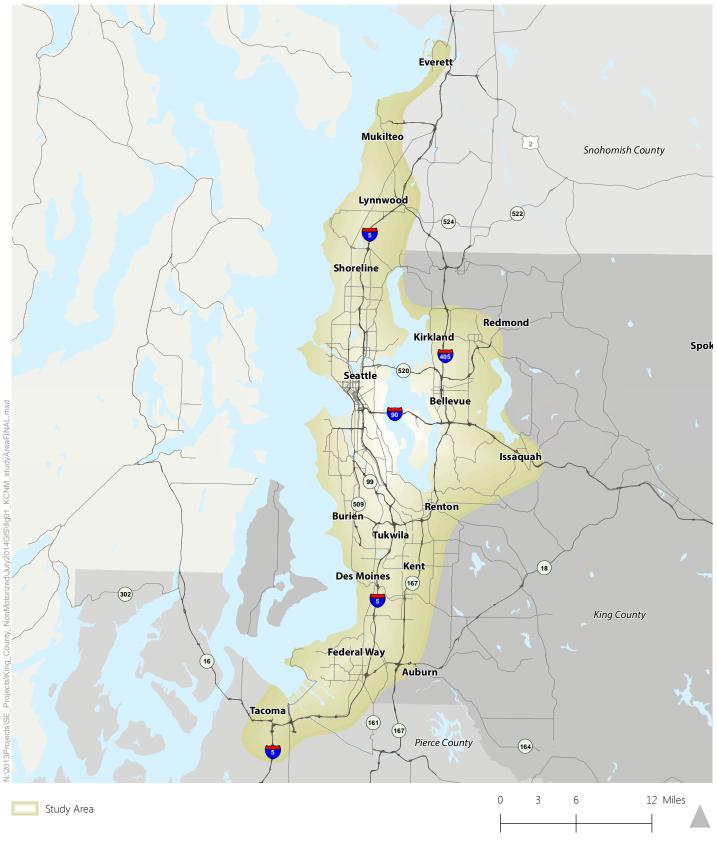


Figure 1 Study Area